Search for extended emission in 4 years of GBM GRBs

G. Fitzpatrick*, S. McBreen, V. Connaughton, D. Tierney and the GBM Team

October 31, 2012

^{*}G. Fitzpatrick acknowledges the support of the Irish Research Council

Introduction

- Extended emission above 100 MeV observed in multiple GRBs with Fermi LAT
 - e.g. GRB 090926, observed out to ~ 5 ks, decayed as a power law of index ~ -1.7
- Can be explained as synchrotron emission from the external forward shock [Kumar & Duran, 2010, Ghisellini et al., 2010]
- BATSE observations [Connaughton, 2002]
 - Long GRBs, tails observed out to hundreds of seconds, decayed with a power law of $index - 0.6 \pm 0.1$
 - Short GRBs, tail emission much less significant
- Could such emission be observed in GBM?
- Definitions:
 - Prompt emission corresponds to that which occurs during the t₉₀
 - Extended emission is that which occurs after the t₉₀

Polynomial Interpolation

Estimation from offset orbits

Blank Field Tests

- 122 regions without triggers of duration 6 ks selected
- Regions of high solar/SGR activity avoided
- Average Residual lightcurve is consistent with zero emission for NaI bands

Methodology of Search in GBM data

For each GRB:

- generate lightcurve & background (6 ks, 1 ks pre trigger)
- generate good time intervals (GTI) for each detector
 - source not occulted by earth
 - angle to source $<60^{\circ}$, 90° for NaI, BGO
 - average detector lightcurves

For all GRBs:

- Align by 1 s peak flux time interval (10-1000 keV)
- Average these and generate lightcurves in 8 energy bands as with blank fields
- Used 25-300 keV

GRB Samples

985 GRBs in 4 yrs: 14th Aug 2008 $^{\dagger}\text{-}$ 14th Aug 2012

	All	Bright [‡]
Short	171/	29/
Long	814/	102/

[†]Continuous data not available before this date

 $^{^\}ddagger$ for short, bright = Peak Flux > 4.725 Photons/s/cm², for long bright = Fluence > 2e-5 ergs/cm²

GRB Samples

985 GRBs in 4 yrs: 14th Aug 2008[†] - 14th Aug 2012

	All	Bright [‡]
Short	171/83	29/12
Long	814/249	102/35

Attrition is high!

- SAA exit in any 1 of 3 regions
- Source Occulted soon after trigger
- Interfering sources (e.g. Solar Flares, GRBs, etc ...)
- Mismatched S/C geometry in different regions (e.g. ARR, ToO, etc ...)

[†]Continuous data not available before this date

 $^{^{\}ddagger}$ for short, bright = Peak Flux > 4.725 Photons/s/cm², for long bright = Fluence > 2e-5 ergs/cm²

Short GRBs

- Low level extended emission observed
- Unable to constrain a power law decay

Short Bright GRBs

Low level extended emission observed

- Unable to constrain a power law decay
- Sub samples of candidates with hints of extended emission are being investigated

Long GRBs

Long GRBs

Long Bright GRBs

- Long GRB sample includes many 'long' GRBs
- Supress prompt emission

Long GRBs

First 50s removed

t₉₀ supressed

Including Prompt:

- 25-300 keV:
 - Decay well described by a power law of index -1.18 ± 0.1

Supressing Prompt:

- 25-300 keV:
 - Decay well described by a power law of index -0.5 ± 0.1

Bright Long GRBs

First 50s removed

t₉₀ supressed

Including Prompt:

- 25-300 keV:
 - Decay well described by a power law of index -2.11 ± 0.1

Supressing Prompt:

- 25-300 keV:
 - Decay well described by a power law of index -1.18 ± 0.1

- Based on our data, the best case for observing extended emission in an individual GBM GRB is in a bright long event, preferably one with a LAT detection of extended emission
- Have to be careful ARRs cause mismatch in detector source geometries
- Star List (not comprehensive!)
 - GRB 080916:
 - GRB 090323A:
 - GRB 090328:
 - GRB 090510:
 - GRB 090626:
 - GRB 090902B:
 - GRB 090926:

- Based on our data, the best case for observing extended emission in an individual GBM GRB is in a bright long event, preferably one with a LAT detection of extended emission
- Have to be careful ARRs cause mismatch in detector source geometries
- Star List (not comprehensive!)

• GRB 080916: data missing

• GRB 090323A: bad geometry

• GRB 090328: bad geometry

• GRB 090510:

• GRB 090626:

GRB 090902B: bad geometry

• GRB 090926: SAA

Extended emission in individual GRBs

- Based on our data, the best case for observing extended emission in an individual GBM GRB is in a bright long event, preferably one with a LAT detection of extended emission
- Have to be careful ARRs cause mismatch in detector source geometries
- Star List (not comprehensive!)
 - GRB 080916:
 - GRB 090323A:
 - GRB 090328:
 - GRB 090510:
 - GRB 090626:
 - GRB 090902B:
 - GRB 090926:

GRB 090510

lightcurve

 2σ bins

- Slew starts at \sim T₀ + 25 s
- t_{90} of $\sim 1 s$
- Possible extended emission for \sim 7.5 s (@ \sim 2 σ)
 - Possible power law decay

GRB 090626

lightcurve

 4.5σ bins

- Classified by GBM FSW as Local Particles → delayed ARR
- t_{90} of $\sim 50 \pm 2.8 \, \mathrm{s}$ starting at $T_0 + 1.5 \, \mathrm{s}$
- Ignoring all emission from T_0 to $T_0 + 55 \, \mathrm{s}$ we can detect emission until $\sim 380 \, \mathrm{s}$ at $4.5 \, \sigma$
- Possible power law decay, but index unconstrained: \sim -0.6 \pm 0.3

Conclusion

- Trying to find extended emission in GBM is hard!
 - Candidates for extended emission will generally cause an ARR
- Hints of extended emission for short GRBs more statistics or subsamples?
- Long GRBs
 - · Tails are significant to several hundred seconds
 - With prompt: power law decay index of \sim -1.18 and \sim -2.1 for long and bright long respectively (25-300 keV)
 - Excluding prompt: power law decay index of \sim -0.5 and \sim -1.3 for long and bright long respectively (25-300 keV)
 - Likely that the contamination from the bright prompt is causing the steepening
- Extended emission observed in two individual GRBs
 - GRB 090510: \sim 10 s (low significance)
 - GRB 090626: \sim 380 s (4.5 σ), decays as a power law of index -0.6 ± 0.3